A Snapshot of Deltaic and Basement Tectonics at a Former Accretionary Margin, NW Borneo

Richard Hillis1, Mark Tingay2 & Rosalind King1
1 Australian School of Petroleum
University of Adelaide
2 University of Karlsruhe
Deltaic and Basement Tectonics, NW Borneo

- tectonic setting
- horizontal stress orientations
- vertical stress magnitudes
- prograding deltaic tectonics
NW Borneo Tectonic Setting

Metcalfe (1996)
NW Borneo Tectonic Setting

- Late K-early TT subduction of oceanic crust of proto-South China Sea: Crocker Rajang accreted
Brunei Cross-Section

Sandal (1996)
Brunei Cross-Section

Sandal (1996)
Deltaic and Basement Tectonics, NW Borneo

- tectonic setting
- horizontal stress orientations
- vertical stress magnitudes
- prograding deltaic tectonics

Australian Earth Sciences Convention July 2006, Melbourne
Maximum Horizontal Stress Orientation

(a) Breakout

(b) DITF

σ_{hmax}

σ_{hmin}

0.5 m

0.25 m
Applications of Present-Day Stress Data

- seal integrity
- naturally fractured reservoirs
- wellbore stability
- sand production
- reservoir drainage
- fracture stimulation
- EOR/flooding

Risk of Breakout

$\frac{C_o}{\sigma_v}$
BUT in Brunei present-day stress orientations are not consistent with the observed structures.
Champion Field Blowout, 1979, Inner Margin

CP-141 Blowout Schematic

Seabed blowout

NW-SE Fracture Created

Initially Normally Pressured Reservoirs

Open Borehole

Overpressured Reservoirs
1979 blowout crater

NW-SE blowout fractures

1974 surface eruption and crater under platform

1974 surface eruption

NW-SE blowout fractures

1974 line of craters

1000 m
Shale Dykes in Jerudong Anticline Confirm Miocene-Pliocene Stress Rotation in Inner Shelf

Miocene: S_{Hmax} margin-parallel

Pliocene: S_{Hmax} margin-normal
Brunei Stress Evolution

Outer Margin
Sparker Seismic

Champion
Blowout

Jerudong
Shale Dykes

Breakouts
Drilling-induced
tensile fracs
Quality:
A
B
C
D

0 km 25

Brunei
Active Normal Faulting, Outer Margin

15m high fault scarp on sea floor

Hiscott (2001)
Brunei Stress Evolution

- S_{Hmax}
- margin-parallel
- margin-normal

Legend:
- Breakouts
- Drilling-induced tensile fracs
- Quality: A, B, C, D

Scale: 0 km 25 km

Brunei
Deltaic and Basement Tectonics, NW Borneo

- tectonic setting
- horizontal stress orientations
- vertical stress magnitudes
- prograding deltaic tectonics

Australian Earth Sciences Convention
July 2006, Melbourne
Vertical Stress Magnitude

- vertical stress exerted by overburden load
- evaluated from density and checkshot sonic log data
- commonly assumed to be 1.0 psi/ft in Tertiary deltas (22.63 MPa/km or average density of 2.3 g/cm³)
- Brunei shows greatest recorded lateral variation in vertical stress
Sv Gradients at 1500m Depth

Sv Low
0.8 psi/ft
ρave 2.07 g/cm³

Sv High
1.1 psi/ft
ρave 2.48 g/cm³

Cross-section
Sandal (1996)
Deltaic and Basement Tectonics, NW Borneo

- tectonic setting
- horizontal stress orientations
- vertical stress magnitudes
- prograding deltaic tectonics
A Snapshot of Deltaic and Basement Tectonics at a Former Accretionary Margin, NW Borneo

- Miocene-Recent inner shelf: deltaic growth faulting-related, margin-parallel stress rotated to basement-controlled margin-normal stress
- Miocene-Recent outer shelf: deltaic toe-thrusting, margin-normal stress rotated to deltaic growth faulting-related, margin-parallel stress
- Progradning deltaic tectonics driven by basement-controlled uplift in a collisional margin
- Vertical stress increases proximally due to basement-controlled uplift
Acknowledgements

Brunei Shell Petroleum (BSP) and Total Fina Elf for providing data for this research and for permission to publish the results. Australian Research Council for providing research funding.

Chris Morley, PTTEP & Dick Swarbrick, GeoPressure Technologies and numerous BSP staff for collaboration

www.asp.adelaide.edu.au/asm