Pore Pressure/Stress Coupling

Richard Hillis
National Centre for Petroleum Geology and Geophysics
Australian Petroleum Cooperative Research Centre
Pore Pressure/Stress Coupling

- introduction
- coupled changes: theory
- coupled changes: data
- implications
- conclusions
Pore Pressure/Stress Coupling

- introduction
- coupled changes: theory
- coupled changes: data
- implications
- conclusions
Conclusions

- changes in P_P are coupled to changes in σ_h at both the 'oil field' and 'basin' scale
- predictions based on the assumption that σ_h is independent of P_P are unreliable
Effective Normal Stress ($\sigma_n - P_p$)

- overpressure (basin scale)
- depletion (field scale)

Shear Stress

failure envelope

initial state

0

Effective Normal Stress ($\sigma_n - P_p$)
P_p/σ_h coupling has implications for:

- induced seismicity
- wellbore stability
- limits to overpressure
- mode of failure

\{
\begin{align*}
\text{field scale} \\
\text{basin scale}
\end{align*}
\}
Pore Pressure/Stress Coupling

- introduction
- coupled changes: theory
- coupled changes: data
- implications
- conclusions
Poroelastic Theory

\[\sigma_h = k (\sigma_v - P_p) + P_p \]

\[k = \frac{\nu}{1 - \nu} ; \quad 0 < k < 1 \]

eg. \(\nu = 0.25; \ k \approx 0.33; \ \Delta\sigma_h/\Delta P_p \approx 0.67 \)
Frictional Limit Theory

\[
\frac{\sigma_1 - P_p}{\sigma_3 - P_p} = m
\]

\[
\sigma_h = \frac{1}{m} (\sigma_v - P_p) + P_p
\]

assuming normal fault regime

\[
m = \{(\mu^2 + 1)^{1/2} + \mu\}^2
\]

eg. \(\mu = 0.58; m \approx 3; \Delta\sigma_h/\Delta P_p \approx 0.67\)
Pore Pressure/Stress Coupling

- introduction
- coupled changes: theory
- coupled changes: data
- implications
- conclusions
Ekofisk Field, North Sea: Field Scale

Pore Pressure (MPa) vs. Minimum Horizontal Stress (MPa)

- crest
- flank
- outer flank

(Ekofisk Field, North Sea) (Teufel et al. 1991)
Scotian Shelf, Canada: Basin Scale

Bell 1990
Scotian Shelf, Canada: Basin Scale

Pore Pressure Gradient (MPa/km)

Minimum Horizontal Stress Gradient (MPa/km)

(Bell 1990)
North West Shelf, Australia: Basin Scale
Gannet/Guillemot Fields, North Sea: Basin Scale
Vicksburg Formation, South Texas: Field Scale

Minimum Horizontal Stress Gradient (MPa/km) vs. Pore Pressure Gradient (MPa/km)

(Salz 1977)
Travis Peak Formation, East Texas: Field Scale

Minimum Horizontal Stress Gradient (MPa/km) vs. Pore Pressure Gradient (MPa/km)

(Whitehead et al. 1987)
Alberta Basin, Western Canada: Field Scale

(Pore Pressure Gradient (MPa/km)

Minimum Horizontal Stress Gradient (MPa/km)

Woodland & Bell, 1989)
<table>
<thead>
<tr>
<th>Area</th>
<th>Scale</th>
<th>$\Delta \sigma_h/\Delta P_p$</th>
<th>C.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scotian Shelf, Canada</td>
<td>B</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>North West Shelf, Australia</td>
<td>B</td>
<td>0.75</td>
<td>0.48</td>
</tr>
<tr>
<td>Gannet/Guillelmot Fields, North Sea</td>
<td>B</td>
<td>0.60</td>
<td>0.67</td>
</tr>
<tr>
<td>Vicksburg Formation, South Texas</td>
<td>F</td>
<td>0.48</td>
<td>0.88</td>
</tr>
<tr>
<td>Travis Peak Formation, East Texas</td>
<td>F</td>
<td>0.57</td>
<td>0.85</td>
</tr>
<tr>
<td>Alberta Basin, Western Canada</td>
<td>F</td>
<td>0.34</td>
<td>0.26</td>
</tr>
<tr>
<td>Ekofisk Field, North Sea</td>
<td>F</td>
<td>~0.8</td>
<td>-</td>
</tr>
<tr>
<td>US Gulf Coast</td>
<td>B & F</td>
<td>0.46</td>
<td>-</td>
</tr>
<tr>
<td>Lake Maracaibo, Venezuela</td>
<td>F</td>
<td>0.56</td>
<td>-</td>
</tr>
<tr>
<td>Brunei</td>
<td>B & F</td>
<td>0.49</td>
<td>-</td>
</tr>
<tr>
<td>Magnus Field, North Sea</td>
<td>F</td>
<td>0.68</td>
<td>-</td>
</tr>
<tr>
<td>West Sole Field, North Sea</td>
<td>F</td>
<td>1.18</td>
<td>-</td>
</tr>
<tr>
<td>Wytch Farm Field, UK</td>
<td>F</td>
<td>0.65</td>
<td>-</td>
</tr>
<tr>
<td>Venture Field, Canada</td>
<td>B</td>
<td>0.56</td>
<td>-</td>
</tr>
</tbody>
</table>
Pore Pressure/Stress Coupling

- introduction
- coupled changes: theory
- coupled changes: data
- implications
- conclusions
Implications

- changes in P_p and σ_h coupled
- changes in P_p do not affect σ_v (weight of overburden)
Implications

\[\sigma'_h = \sigma_h - P_p \]

\[\sigma'_v = \sigma_v - P_p \]
Stress Gradient (MPa/km)

Pore Pressure Gradient (MPa/km)

Field Scale (Depletion)

Basin Scale (Overpressure)

hydrostat
lithostat

diff. stress

\(\sigma_h \)

\(\sigma_v \)

\(\sigma_v' \)

\(\sigma_h' \)

diff. stress
overpressure (basin scale)

depletion (field scale)

failure envelope

initial state

Shear Stress

Effective Normal Stress ($\sigma_n - P_p$)

σ_h'

σ_v'
Shear Stress (MPa) vs. Effective Normal Stress \((\sigma_n - P_p)\)

- Depletion lines indicate the depletion of shear stress as the effective normal stress increases.
Shear Stress (MPa)

Effective Normal Stress ($\sigma_n - P_p$)

Overpressure

σ_h'

σ_v'
Implications: Field Scale

- P_P/σ_h coupling can account for depletion-induced seismicity
- P_P/σ_h coupling must be incorporated in models of the (changing) stability of open hole completions with the drawdown of reservoir pressure
Implications: Basin Scale

- P_p/σ_h coupling implies that considerably more overpressure can be sustained than would be predicted by simple (uncoupled) models of rock failure.

- P_p/σ_h coupling promotes tensile as opposed to shear failure with overpressure development.
Pore Pressure/Stress Coupling

- introduction
- coupled changes: theory
- coupled changes: data
- implications
- conclusions
Conclusions

- Changes in P_P are coupled to changes in σ_h at both the 'oil field' and 'basin' scale.
- Predictions based on the assumption that σ_h is independent of P_P are unreliable.
P_p/σ_h coupling has implications for:

- induced seismicity
- wellbore stability
- limits to overpressure
- mode of failure

\{
 \text{field scale}
\}
\{
 \text{basin scale}
\}