Stress and Strain:
Implications for fault reactivation and seal integrity within the Exeter and Mutineer Fields, Australian North West Shelf

Adrian White 1, Warwick Crowe 2, Mat Harrowfield 2, Richard Hillis 1 and Myra Keep 2

1 Australian School of Petroleum, Univ. of Adelaide, Adelaide, SA 5005, AUSTRALIA
2 Tectonics Special Research Centre, Univ. of Western Australia, Crawley, WA 6009, AUSTRALIA
Presentation Outline

• Location of the study region
• Orientation of the principal stresses
• Magnitudes of the principal stresses
• Fault orientations
• Geomechanical modelling
 • Fault reactivation risk
 • Creation of new faults and fractures
• Strain manifestation
• Implications and conclusions
Location of the Exeter and Mutineer Fields
Orientation of the principal stresses

- The principal stresses are assumed to be:
 - S_h
 - S_H
 - S_V
Orientation of the horizontal stresses

- Orientation of the horizontal stresses can be determined from FMI logs:
 - The presence of **borehole breakouts** and/or
 - **drilling-induced tensile fractures** (DITFs)
Orientation of the horizontal stresses

• Analysis of FMI logs from Mutineer 1b reveals poorly-developed borehole breakouts.

• Mutineer 1b also shows poorly-developed DITFs.
Orientation of the maximum horizontal stress (S_H)

- Breakouts reveal a S_H orientation of 107°N
- Consistent with:
 - Breakouts from Wanaea-Cossack (Hillis & Williams, 1993)
 - S_H orientations from data shown on *Australian Stress Map* (Hillis & Reynolds, 2000)
Magnitudes of the principal stresses

- S_V calculated from density logs and the Nafe-Drake transform
- S_h determined from leak-off test records – best of fit line applied to the data
- Upper bound for S_H calculated using frictional limits to stress relation...

$$\frac{S_1 - P_p}{S_3 - P_p} = \left[\sqrt{\mu^2 + 1 + \mu}\right]^2$$

...and a best of fit line applied to the data
Magnitudes of the principal stresses

- \(S_H \) modelled using SWIFT software and information on:
 - Presence of incipient borehole breakouts
 - Presence of incipient DITFs
 - Rock mechanical properties
 - Pore pressures
 - Magnitudes of other principal stresses

\[\frac{S_H}{S_V} = 0.766 \]
Quantification of the Exeter-Mutineer stress tensor

- S_h gradient approximately 17.1 MPa/km
- S_H upper bound gradient (frictional limits) approximately 32.3 MPa/km
- S_H (rock mechanical determination) gradient approximately 28.6 MPa/km
- S_V gradient approximately 23.6 MPa/km
Fault orientations within Exeter-Mutineer

- Faults loaded into TrapTester software
- Faults are predominantly orientated NE-SW
- Faults range in depth from 3000 to 6000 metres

(Depth scale in metres TVDSS)
Geomechanical modelling: fault reactivation risk

- Reactivation risk relates to the increase in pore pressure required to cause slip on pre-existing structures.
- Modelling requires:
 - Pore pressure profile – HYDROSTATIC
 - Contemporary stress tensor – $S_h < S_v < S_H$
Geomechanical modelling: fault reactivation risk

- Reactivation risk assessment based on a reduction in effective stress
- Mohr circle driven towards failure envelope with a P_p increase
- Faults most likely to fail require a smaller ΔP_p
Fault reactivation risk

- Reactivation risk measures the likelihood of movement on pre-existing faults
- Modelling assumes cohesionless fault surfaces and uses a failure envelope with a $\mu = 0.6$
- Results show faults most susceptible to slip strike NW-SE
Fault reactivation risk

- Reactivation risk assessed for all possible fault orientations
- Dark arcs represent Exeter-Mutineer faults
- Deep red colours show faults most likely to be reactivated as poles to planes
- Most risky Exeter-Mutineer faults have 45°N dips and strikes of ~ 080°N
Geomechanical modelling: formation of new faults & fractures

• Formation of new faults and fractures relates to the increase in pore pressure required to fail intact rock
• Modelling requires knowledge of:
 • Pore pressures
 • Contemporary stress tensor
 • Rock mechanical data
Formation of new faults & fractures

- Fracture tendency assessed for all possible orientations
- Deep red colours show new faults and fractures most likely to be formed
- New features most likely to be sub-vertical and have orientations of 085°N and 130°N
Stress tensor implications for fault movement

- The structural regime is shown to be $S_h < S_v < S_H$
- Production will lead to P_p reduction
- P_p – stress coupling not an issue:
 - S_1 and S_3 both horizontal
 - Respond to negative ΔP_p in same way
 - Reactivation of faults and/or formation of new structures unlikely
Strain manifestation

- Seismic images show minimal offsets across Jurassic-Cretaceous faults
- No faults mapped in the Tertiary
- Long wavelength, low amplitude bulge across the region
 - Suggested to represent ductile strain from very low strain rates
Conclusions (1)

- S_h magnitude is $\sim 75\% S_V$
- Modelling estimates S_H to be 5 MPa/km above S_V
- The differential stress is estimated to be ~ 12 MPa/km
- Breakouts show the mean S_H orientation is 107°N
- Fault reactivation risking shows Exeter-Mutineer faults are unfavourably oriented for reactivation
 - Faults most susceptible to reactivation strike NW-SE
- Failure of intact rock requires greater increases in pore pressure than fault reactivation
Conclusions (2)

• Production leads to drawdown
 • Mohr circle moves away from the failure envelope therefore reactivation more unlikely

• Strain analyses show no significant faulting in Tertiary

• Strain manifests as a low amplitude bulge across Exeter-Mutineer
 • Further evidence for a low risk of brittle fault reactivation